Ecole normale supérieure de Lyon
école normale Supérieure

Advanced search

Cutting-edge research

    

Chemistry, Research

Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries

Publication in Nature Communications

Published on : August 22, 2017
Nano-batteries_Chimie.jpg
Abstract

High-performance Li-ion batteries require materials with well-designed and controlled structures on nanometre and micrometre scales. Electrochemical properties can be enhanced by reducing crystallite size and by manipulating structure and morphology. Here we show a method for preparing hierarchically structured Li4Ti5O12 yielding nano- and microstructure well-suited for use in lithium-ion batteries. Scalable glycothermal synthesis yields well-crystallized primary 4–8 nm nanoparticles, assembled into porous secondary particles. X-ray photoelectron spectroscopy reveals presence of Ti+4 only; combined with chemical analysis showing lithium deficiency, this suggests oxygen non-stoichiometry. Electron microscopy confirms hierarchical morphology of the obtained material. Extended cycling tests in half cells demonstrates capacity of 170 mAh g−1 and no sign of capacity fading after 1,000 cycles at 50C rate (charging completed in 72 s). The particular combination of nanostructure, microstructure and non-stoichiometry for the prepared lithium titanate is believed to underlie the observed electrochemical performance of material.

References: Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries - Mateusz Odziomek, Frédéric Chaput, Anna Rutkowska, Konrad Świerczek, Danuta Olszewska, Maciej Sitarz, Frédéric Lerouge & Stephane Parola - Nature Comm. 26 mai 2017 - 10.1038/ncomms15636



Search of an article

Search of an article

Contact

ENS de Lyon
15 parvis René Descartes - BP 7000
69342 Lyon Cedex 07 - FRANCE
Descartes Campus : +33 (0) 4 37 37 60 00
Monod Campus : +33 (0) 4 72 72 80 00

Contact us

Stay connected